Algebraic Geometry
 Lecture 2

Andrew Potter

November 26, 2007

1 Affine Varieties

1.1 Affine Algebraic Sets

Let k be a field and \bar{k} its algebraic closure.

$$
\begin{aligned}
\mathbb{A}^{n} & :=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in \bar{k}\right\} . \\
\mathbb{A}^{n}(k) & :=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in k\right\} .
\end{aligned}
$$

Suppose from now on that k is algebraically closed, unless otherwise stated. In this context, k is often called the ground field.

Denote by $k[X]$ the polynomial ring in n variables, i.e. $k\left[X_{1}, X_{2}, \ldots, X_{n}\right]$. Let $S \subset k[X]$ be a set of polynomials. We define

$$
V(S):=\left\{P \in \mathbb{A}^{n} \mid f(P)=0 \text { for every } f \in S\right\}
$$

Examples:

- Let $S=\left\{x^{2}+y^{2}-1\right\}$. Then $V(S) \subset \mathbb{A}^{2}(\mathbb{R})$ is the circle centred at the origin.
- Let $S=\left\{x^{2}+y^{2}-1, x\right\}$. Then $V(S) \subset \mathbb{A}^{2}(\mathbb{R})$ is the set $\{(\pm 1,0)\}$.

A subset V of \mathbb{A}^{n} which can be written as $V(S)$ for some subset of polynomials S is called an affine algebraic set.

Note that if $f, g \in S$ and $a \in k[X]$, then

- $(f+g)(P)=f(P)+g(P)=0$ for all $P \in V(S)$ and
- $(a f)(P)=a f(P)=0$ for all $P \in V(S)$.

So we might as well consider an ideal (S) generated by a set of polynomials S. $V(S)=V((S))$.

1.2 The Ideal of an Affine Algebraic Set

To every affine algebraic set V we can associate an ideal $I \subset k[X]$.

$$
I(V):=\{f \in k[X] \mid f(P)=0 \text { for all } P \in V\} .
$$

This is an ideal of the ring $k[X]$ because for all $f, g \in I(V)$ and all $a \in k[X]:$

- $f+g \in I(V)$.
- $a f \in I(V)$.

The point of the ideal $I(V)$ is that we have $V(I(V))=V(S)$. However, it is NOT always the case that $I(V)=(S)$.

Theorem 1.1. (Hilbert Basis Theorem) Every algebraic set can be given by a finite set S of polynomials.

Proof. This result comes from the original version of the Hilbert Basis Theorem: Every ideal in $k[X]$ is finitely generated. (Actually, if A is noetherian, then $A[X]$ is noetherian.)

We would like to address the question: What is the connection between the ideals (S) and $I(V)$?

Example: Suppose $S=\left\{x^{2}\right\}$. Then $V(S)=\{0\}$ in $\mathbb{A}(\mathbb{R})$. But $I(V)=(x)$.
So we DON'T get a one-to-one correspondence between ideals and algebraic sets.

Theorem 1.2. (Nullstellensatz) If $f \in I(V)$, then $f^{r} \in S$ for some $r \in \mathbb{N}$.
Let J be an ideal. The radical ideal of J is the ideal

$$
\operatorname{rad} J=\left\{f \in k[X] \mid f^{r} \in J \text { for some } r \in \mathbb{N}\right\} .
$$

Nullstellensatz says $I(V(S))=\operatorname{rad}(S)$.
So we get a one-to-one correspondence between algebraic sets and RADICAL ideals.

1.3 Irreducibility and Varieties

We say that an algebraic set V is reducible if it can be expressed as a union $V=V_{1} \cup V_{2}$, where V_{1}, V_{2} are affine algebraic sets. If V cannot be expressed as such, then it is irreducible.

We call an irreducible affine algebraic set an affine (algebraic) variety.
Theorem 1.3. An affine algebraic set V is irreducible if and only if its ideal $I(V)$ is prime.

Definition 1.1. An ideal I is prime if whenever $a b \in I$, then $a \in I$ or $b \in I$.

2 Projective Varieties

Let k be a field and \bar{k} its algebraic closure. Consider $\mathbb{A}^{n+1} \backslash\{0\}$ modulo the following equivalence relation: For all $x, y \in \mathbb{A}^{n+1} \backslash\{0\}$,

$$
x \sim y \Longleftrightarrow \exists \lambda \in \bar{k} \backslash\{0\} \text { such that } y=\lambda x .
$$

We call this set n-dimensional projective space and usually write its elements in terms of homogeneous coordinates:

$$
\mathbb{P}^{n}:=\left\{\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right] \mid a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \bar{k}\right\} .
$$

where not all the a_{i} are zero, and $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]=\left[a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right]$ iff there exists $\lambda \in \bar{k} \backslash\{0\}$ such that $a_{i}=\lambda a_{i}^{\prime}$ for $i=0,1, \ldots, n$.

$$
\mathbb{P}^{n}(k):=\left\{\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right] \mid a_{1}, a_{2}, \ldots, a_{n} \in k\right\} .
$$

under the same conditions.
Example: $\mathbb{P}^{2}(\mathbb{R})$ is two-dimensional real projective space (the projective plane). A typical element is $[1,2,3]$ which is the same element as $[2,4,6]$.

We consider $\mathbb{P}^{2}(\mathbb{R})$ to be $\mathbb{A}^{2}(\mathbb{R})$ "plus some points at infinity". To see this, consider a general point $[X, Y, Z]$ with $Z \neq 0$. This is the same point as $[X / Z, Y / Z, 1]$. Every element $(x, y) \in \mathbb{A}^{2}(\mathbb{R})$ can be written as $[x, y, 1]$. The "points at infinity" are the points $[X, Y, Z]$ with $Z=0$.

Suppose from now on that k is algebraically closed, unless otherwise stated.
We want to be able to define a projective algebraic set. However, the notion of "zero sets of polynomials" is not enough.

Example: The polynomial $Y-X^{2}$ has the zero $[1,1]$. So it should also have the zero [2, 2], but it doesn't.

Instead we consider only homogeneous polynomials, i.e. ones which satisfy

$$
f\left(\lambda X_{0}, \lambda X_{1}, \ldots, \lambda X_{n}\right)=\lambda^{d} f\left(X_{0}, X_{1}, \ldots, X_{n}\right) \text { for some } d \in \mathbb{N} .
$$

Example: $3 X^{2} Y+X Z^{2}+Z^{3}+Y^{3}$.
So we let S be a set of homogeneous polynomials. We define

$$
V(S):=\left\{P \in \mathbb{P}^{n} \mid f(P)=0 \text { for every } f \in S\right\}
$$

A projective algebraic set is a subset V of \mathbb{P}^{n} which can be written in the form $V(S)$ for some set of homogeneous polynomials S.

Similarly, we define the ideal of a projective algebraic set as

$$
I(V):=\{f \in k[X] \mid f(P)=0 \text { for all } P \in V\}
$$

Because "all $P \in V$ " refers to all scalar multiples, the ideal contains only homogeneous polynomials. Thus we call it a homogeneous ideal.

Again we have the Hilbert Basis Theorem and Nullstellensatz for projective algebraic sets. Also, a projective variety is an irreducible projective algebraic set (and it has a prime homogeneous ideal).

Example: We want to consider the elliptic curve $y^{2}=x^{3}+a x+b$ projectively. We homogenise the curve by setting $x=X / Z$ and $y=Y / Z$, giving us:

$$
Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

The points at infinity are given by $Z=0$: i.e. $[0,1,0]$.

3 The Zariski Topology

Let V be a set. A topology on V is a choice of subsets of V (which we shall call "open sets") such that:

1. \emptyset is open.
2. V is open.
3. unions of open sets are open.
4. finite intersections of open sets are open.

A subset $U \subset V$ is called closed if $V \backslash U$ is open.
Define the Zariski topology on \mathbb{A}^{n} (or \mathbb{P}^{n}) by saying all algebraic sets V are closed (equivalently, all complements of algebraic sets are open).

The Zariski topology on an algebraic set V is defined by calling all the algebraic subsets of V the closed sets.

A quasi-affine variety is an open subset of an affine variety.
A quasi-projective variety is an open subset of a projective variety.

