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1 Affine Varieties

1.1 Affine Algebraic Sets

Let k be a field and k its algebraic closure.

An := {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ k}.

An(k) := {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ k}.

Suppose from now on that k is algebraically closed, unless otherwise stated.
In this context, k is often called the ground field.

Denote by k[X] the polynomial ring in n variables, i.e. k[X1, X2, . . . , Xn].
Let S ⊂ k[X] be a set of polynomials. We define

V (S) := {P ∈ An|f(P ) = 0 for every f ∈ S}.

Examples:

• Let S = {x2 + y2 − 1}. Then V (S) ⊂ A2(R) is the circle centred at the
origin.

• Let S = {x2 + y2 − 1, x}. Then V (S) ⊂ A2(R) is the set {(±1, 0)}.

A subset V of An which can be written as V (S) for some subset of polyno-
mials S is called an affine algebraic set.

Note that if f, g ∈ S and a ∈ k[X], then

• (f + g)(P ) = f(P ) + g(P ) = 0 for all P ∈ V (S) and

• (af)(P ) = af(P ) = 0 for all P ∈ V (S).

So we might as well consider an ideal (S) generated by a set of polynomials
S. V (S) = V ((S)).

1.2 The Ideal of an Affine Algebraic Set

To every affine algebraic set V we can associate an ideal I ⊂ k[X].

I(V ) := {f ∈ k[X] | f(P ) = 0 for all P ∈ V }.

This is an ideal of the ring k[X] because for all f, g ∈ I(V ) and all a ∈ k[X]:
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• f + g ∈ I(V ).

• af ∈ I(V ).

The point of the ideal I(V ) is that we have V (I(V )) = V (S). However, it is
NOT always the case that I(V ) = (S).

Theorem 1.1. (Hilbert Basis Theorem) Every algebraic set can be given by a
finite set S of polynomials.

Proof. This result comes from the original version of the Hilbert Basis Theorem:
Every ideal in k[X] is finitely generated. (Actually, if A is noetherian, then A[X]
is noetherian.)

We would like to address the question: What is the connection between the
ideals (S) and I(V )?

Example: Suppose S = {x2}. Then V (S) = {0} in A(R). But I(V ) = (x).
So we DON’T get a one-to-one correspondence between ideals and algebraic

sets.

Theorem 1.2. (Nullstellensatz) If f ∈ I(V ), then fr ∈ S for some r ∈ N.

Let J be an ideal. The radical ideal of J is the ideal

radJ = {f ∈ k[X]|fr ∈ J for some r ∈ N}.

Nullstellensatz says I(V (S)) = rad(S).
So we get a one-to-one correspondence between algebraic sets and RADICAL

ideals.

1.3 Irreducibility and Varieties

We say that an algebraic set V is reducible if it can be expressed as a union
V = V1 ∪ V2, where V1, V2 are affine algebraic sets. If V cannot be expressed as
such, then it is irreducible.

We call an irreducible affine algebraic set an affine (algebraic) variety.

Theorem 1.3. An affine algebraic set V is irreducible if and only if its ideal
I(V ) is prime.

Definition 1.1. An ideal I is prime if whenever ab ∈ I, then a ∈ I or b ∈ I.

2 Projective Varieties

Let k be a field and k its algebraic closure. Consider An+1 \ {0} modulo the
following equivalence relation: For all x, y ∈ An+1 \ {0},

x ∼ y ⇐⇒ ∃λ ∈ k \ {0} such that y = λx.

We call this set n-dimensional projective space and usually write its elements
in terms of homogeneous coordinates:

Pn := {[a0, a1, a2, . . . , an]|a0, a1, a2, . . . , an ∈ k}.
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where not all the ai are zero, and [a0, a1, a2, . . . , an] = [a′
0, a

′
1, a

′
2, . . . , a

′
n] iff

there exists λ ∈ k \ {0} such that ai = λa′
i for i = 0, 1, . . . , n.

Pn(k) := {[a0, a1, a2, . . . , an]|a1, a2, . . . , an ∈ k}.

under the same conditions.
Example: P2(R) is two-dimensional real projective space (the projective

plane). A typical element is [1, 2, 3] which is the same element as [2, 4, 6].
We consider P2(R) to be A2(R) “plus some points at infinity”. To see this,

consider a general point [X, Y, Z] with Z 6= 0. This is the same point as
[X/Z, Y/Z, 1]. Every element (x, y) ∈ A2(R) can be written as [x, y, 1]. The
“points at infinity” are the points [X, Y, Z] with Z = 0.

Suppose from now on that k is algebraically closed, unless otherwise stated.
We want to be able to define a projective algebraic set. However, the notion

of “zero sets of polynomials” is not enough.
Example: The polynomial Y −X2 has the zero [1, 1]. So it should also have

the zero [2, 2], but it doesn’t.
Instead we consider only homogeneous polynomials, i.e. ones which satisfy

f(λX0, λX1, . . . , λXn) = λdf(X0, X1, . . . , Xn) for some d ∈ N.

Example: 3X2Y + XZ2 + Z3 + Y 3.
So we let S be a set of homogeneous polynomials. We define

V (S) := {P ∈ Pn | f(P ) = 0 for every f ∈ S}.

A projective algebraic set is a subset V of Pn which can be written in the
form V (S) for some set of homogeneous polynomials S.

Similarly, we define the ideal of a projective algebraic set as

I(V ) := {f ∈ k[X] | f(P ) = 0 for all P ∈ V }.

Because “all P ∈ V ” refers to all scalar multiples, the ideal contains only ho-
mogeneous polynomials. Thus we call it a homogeneous ideal.

Again we have the Hilbert Basis Theorem and Nullstellensatz for projective
algebraic sets. Also, a projective variety is an irreducible projective algebraic
set (and it has a prime homogeneous ideal).

Example: We want to consider the elliptic curve y2 = x3+ax+b projectively.
We homogenise the curve by setting x = X/Z and y = Y/Z, giving us:

Y 2Z = X3 + aXZ2 + bZ3.

The points at infinity are given by Z = 0: i.e. [0, 1, 0].

3 The Zariski Topology

Let V be a set. A topology on V is a choice of subsets of V (which we shall call
“open sets”) such that:

1. ∅ is open.

2. V is open.
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3. unions of open sets are open.

4. finite intersections of open sets are open.

A subset U ⊂ V is called closed if V \ U is open.
Define the Zariski topology on An (or Pn) by saying all algebraic sets V are

closed (equivalently, all complements of algebraic sets are open).
The Zariski topology on an algebraic set V is defined by calling all the

algebraic subsets of V the closed sets.
A quasi-affine variety is an open subset of an affine variety.
A quasi-projective variety is an open subset of a projective variety.
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